高校受験、難関・上位校狙いなら、相似をしっかり!

高校受験となると、狙う高校のレベルによって、数学は全然対策が異なってくる。

中位~下位レベルの数学対策

下位レベルの高校だと、とにかくまず計算

正負の数、文字式の整理、一次方程式、連立方程式、二次方程式、関数など、とにかく基本の計算で点数を取れるように勉強する。

こういう高校の入試問題は、計算だけで40点とか50点くらいの配点があるので、ココで確実に点数を取るコトを狙う。

二次関数の問題とか、確率の問題も解けると、それだけで60点くらい取れるので、計算で確実に点数を積み上げることが大事だ。

公立高校の場合も、計算は絶対に落としてはいけない部分だ。

都道府県によって配点は色々あるが、それでも3割くらいの点数はあるから、確実に点数をtみあげたい。

こういう高校の場合は、図形の証明は捨てても良い。図形の問題はたいてい後ろの方にあるし、配点もそんなに大きいわけではない。

だいたい数学が苦手な子どもというのは、証明は苦手だし、図形も苦手だから、そこで点数を取らなくても良い。

受験が迫ったら、そういう取捨選択も必要で、選択と集中が必要なのだ。


上位~難関レベルの数学対策

一方、公立でも私立でも、上位から難関レベルの高校合格を目指すなら、図形の証明は外せない。

中位レベル以下の高校の場合は、図形の証明問題は捨てるべきだが、上位レベルとなると図形問題を捨てると合格点に届かない。

難関私立などになると、計算問題が一問も出ないようなところもあって、関数の問題や図形の問題が数問ずつ出題されてくる場合もある。

そうなると、証明問題を捨てるわけにはいかない。何しろ捨てると点数を取るところがなくなるから。

それから、確率数列など、大学入試でも問われるような分野に力を入れなくてはならない。

確率など、高校で習う内容を前倒しで勉強した方が良いように思う。